

Plant comparative genomics

Making agricultural data FAIR

Tool

S

https://www.gramene.org

Rel #66 (Dec. 2022) Plant genomes: 128 Gene family trees: 152K WG Pairwise DNA alignments: 278 Synteny maps: 79 gene structures Species with genetic variation: 18 Species with baseline gene expression: 28 Curated rice pathways: 320

Species with orthology-based pathway projections: 120 Support for community curation of

Browse

Pathways

PanGenom

For each pan genome site, gene trees were built with a minimum of 7 outgroup species. Expression data and pathways are available for the reference genomes.

maize-pangenome.gramene.org Rel #3 (March 2023) Maize genomes: 41

vitis.gramene.org

Rel #3 (May 2022) Grape genomes: 16

Gene trees: 28K

SORGHUM BASE . Sorg Rel #5 (Dec. 2022) Sorghum genomes: 28 Gene trees: 44K 61M SNPs and EMS mu

61M SNPs and EMS mutations Publications DB & research highlights

Rel #6 (Jan. 2023)

Rice genomes: 28

Gene trees: 38K

oryza.gramene.org

sorghumbase.org

Curated gene functions from the literature (354 Z. mays, 4006 O. sativa, 7184 A. thaliana) enable searches with TO/PO terms, and returns associated PMIDs in a new Publications tab

X9 Zm00001eb005920 Zea mays MZM20017616, Zm00001d027893, lipoxygenase9						Model Species Homolog LOX4 Arabidopsis thaliana PLAT/LH2 domain-containing lipoxygenase family protein			
Location	Expression	Homology	Pathways	Papers	Xrefs				
	publicatio								
This gene ha	is been descri	bed in the lite	rature:						
PubMed link	Curation source	Title/Desc	ription						
			The oxidation of 20:2 and 22:2 by 9-LOX afforded low yields of racemic 11-, 12-, 14-, and 15-hydroperoxides.						
<u>19817685</u>	geneRIF	The oxidat	ion of 20:2 and	22:2 by 9-LO)	Cafforded low yield	s of racemic 11-, 12-, 14-, and 15-hydroperoxides.			

Contact us for data integration, training and support or to partake in our community curation projects:

https://www.gramene.org/feedback

EMBL-EBI

Cite Gramene:

Tello-Ruiz et al (2021) 10.1093/nar/gkaa979

Follow us @GrameneDatabase

Comparative pathway analysis of JA signaling in rice vs 4 species in Gramene's Plant Reactome

Download

Expression

BLAST

CLIMtools

Construction France Structure 0 ↔ France postmany	Cigierus cajas	Click here to passe your data or try example Click here to passe your data or try example	Analysis Tools overrepresentation and expressio "Analyse" button to perform the a glyclime E-hTTAB-1352.bt	nalysis.	
Participation Opposite To Opposite ADD Text Flower Construction Construction Construction Construction Construction			LVANELOSAGE (proced) LVANELOSAGE (proced) LVANELOSA	A-Be : Corression ID Depression (ALYMAT1G56640) 5.1 (RLYMAT4002740) 1.3 (RLYMAT5020420) 0 (RLYMAT5020420) 1.5	11.4
 The standard stan	Conversion Makeudani Expension Analysis (s) Perkeny name Perkeny name Perkeny name porans/sphotophata Exceptionas Management Management Exceptionas Exceptionas Management Exceptionas Exceptionas	Species name four Olycine max 4 Olycine max 4 Olycine max 4 Olycine max 44 Olycine max 44 Olycine max 44	Entities Entities Entities Entities 5 0.003 5 0.003 68 0.009 8.3 0.001 24 0.014 1.120 of 185 1.19	Identifies Edite states FDR Reac fbD FDD fbD 1E0 1E0 1E0 1E0 1E0 1E0	
Events with Enrichment Statistics	Download pathway Enrichment data and mapped gene loci	expression from data poin	Data for unmapped gene loci		