

# Mining Genomes With Gramene

The project is supported by NSF IOS-1127112 and USDA

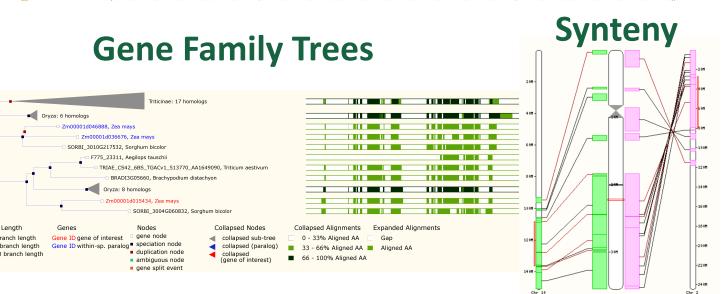
Marcela Karey Tello-Ruiz<sup>1</sup>, Sharon Wei<sup>1</sup>, Andrew Olson<sup>1</sup>, Justin Preece<sup>2</sup>, Parul Gupta<sup>2</sup>, Sushma Naithani<sup>2</sup>, Joshua Stein<sup>1</sup>, Yinping Jiao<sup>1</sup>, Bo Wang<sup>1</sup>, Sunita Kumari<sup>1</sup>, Young Koung Lee<sup>1,3</sup>, Lifang Zhang<sup>1</sup>, Vivek Kumar<sup>1</sup>, Demitri Muna<sup>1</sup>, Dan Bolser<sup>4</sup>, Matthieu Muffato<sup>4</sup>, Peter D'Eustachio<sup>5</sup>, Irene Papatheodorou<sup>4</sup>, Paul J. Kersey<sup>3</sup>, Pankaj Jaiswal<sup>2</sup>, Doreen Ware<sup>1,6</sup>

<sup>1</sup>Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; <sup>2</sup>Oregon State University, Corvallis, OR, USA; <sup>3</sup>Wonkwang University, Iksan 54538, Korea; <sup>4</sup>EMBL-EBI, Hinxton, UK, <sup>5</sup>NYU School of Medicine, New York, NY, USA, <sup>6</sup>USDA ARS NAE Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA

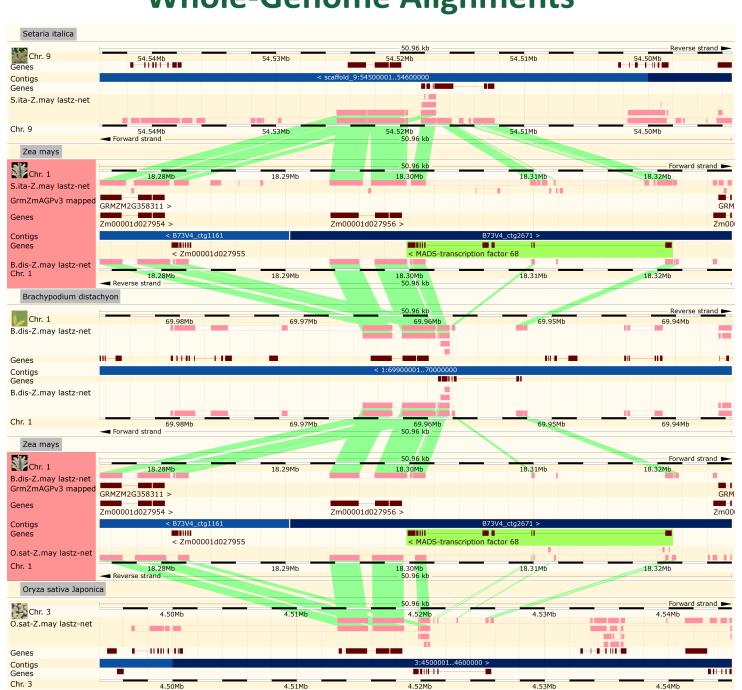
Gramene is developed in collaboration with Ensembl Plants, and leverages the Ensembl & Reactome platforms

## Specific Aim 1: GENOMES

#### **Year Highlights**


- 5 database releases: build 53 (May 2017); build 54 (July 2017); build 55 (Sept 2017); build 56 (Jan 2018); build 56b (Feb 2018)
- Ensembl software updates V88-91
- 53 plant reference assemblies including:
  - 9 new genomes:
  - <u>Cucumis sativus</u> (cucumber)
  - *Dioscorea rotundata* (white Guinea yam)
  - Gossypium raimondii (cotton)
  - Helianthus annuus (common sunflower)
  - Lupinus angustifolius (blue lupin)
  - Manihot esculenta (cassava)
  - *Nicotiana attenuata* (coyote tobacco) *Phaseolus vulgaris* (common bean) Corchorus capsularis (Jute)
  - ❖ 4 updated genomes:
  - Sorghum bicolor (sorghum [V3]
  - Glycine max (soybean [V3])
  - Prunus persica (peach [V2])
  - Hordeum vulgare (barley [V2])
- New gene structural annotations: maize, barley & rice
- New functional annotations (e.g., InterPro domains)
- Updated protein gene trees
- New genetic variation: 13M SNPs Arabidopsis thaliana (1001 Genomes Project); 20,483 rice QTLs (Gramene archives & Q-TARO database) & 1,278 rice SSR/RFLPs (Gramene archives); 7.4 M EMS-induced wheat point mutations (Ksenia et al, 2017) to a total of 230.5 M variants
- Over 1,600 public RNA-Seq studies from Track Hub

#### New Maize RefGenV4 Data


- Updated maize V4 gene models
- Updated protein domains from InterProScan
- Updated protein gene trees Gene neighborhood views for local synteny
- New whole-genome alignments (WGAs) between maize and sorghum support coding & non-coding sequence conservation
- New ncRNA feature alignments
- New transposon annotation (Jiao et al, 2017)
- Affy & Agilent probe arrays remapped New maize public RNA-Seq studies in Track Hub

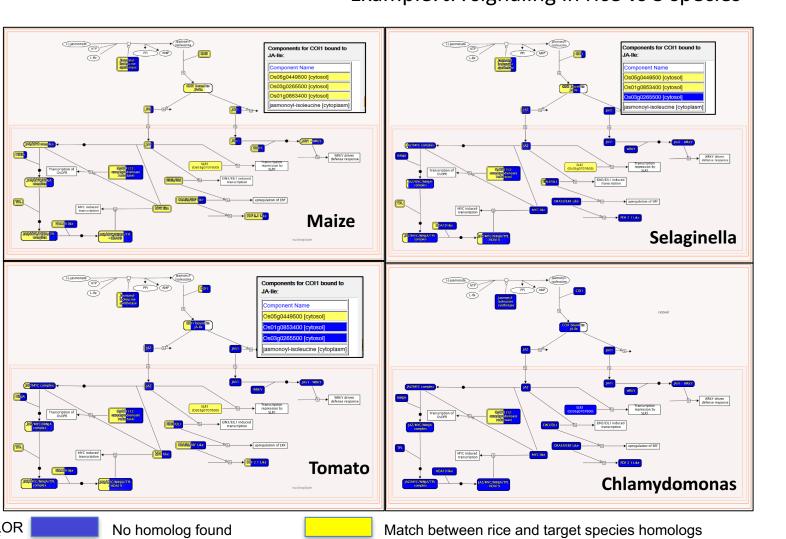
#### **RNA-Seq Data from Public Track Hub Registry**





#### **Whole-Genome Alignments**

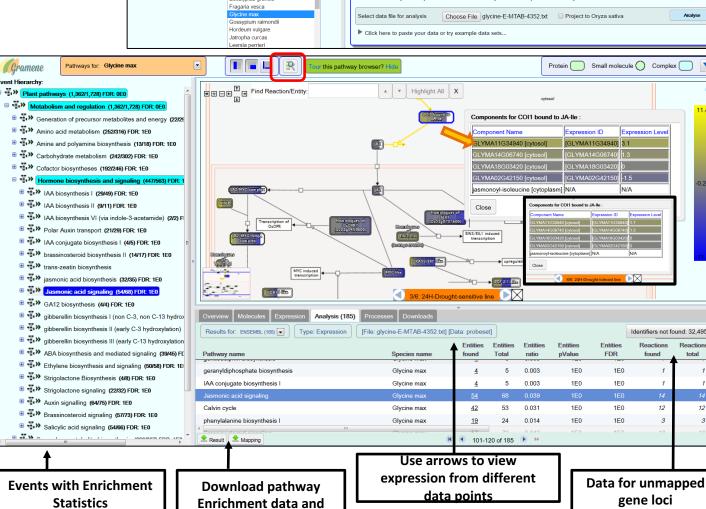



# Specific Aim 2: PATHWAYS & EXPRESSION

#### **Year Highlights**

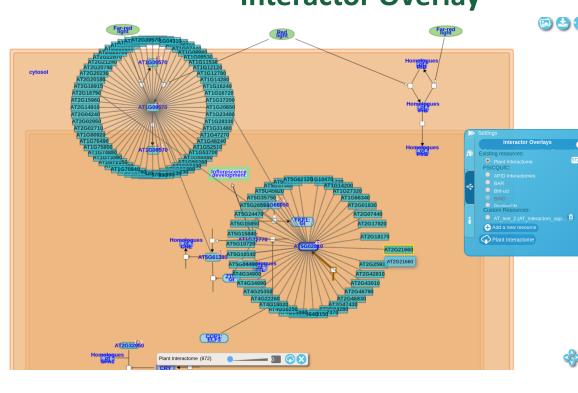
- 22 newly curated rice pathways to a total of 264 reference rice pathways
- Orthology-based projections to 74 plant species including maize allows pathway enrichment and inter-species comparison
- Baseline and differential expression data sets from 734 experiments and 18 reference plant species (Expression Atlas)

#### **Newly curated pathways**

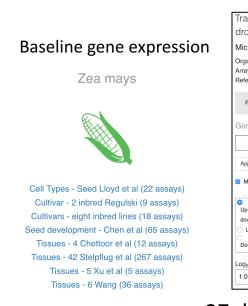

- Reproductive structure development
- Anther and pollen development
- Vegetative structure development Primary root development
- Response to submergence
- Underwater shoot and internode elongation
- Response to phosphate deficiency
- Photorespiration Ureide biosynthesis
- Beta-alanine betaine biosynthesis • Proline biosynthesis V from arginine
- Phospholipid biosynthesis I
- Sphingolipid metabolism
- Response to iron deficiency
- Mugineic acid biosynthesis Iron uptake and transport in root vascular system
- Proline degradation
- Glutamate degradation
- Phenylalanine degradation III Lysine degradation II
- **Comparative pathway analysis** • Threonine degradation Example: JA signaling in rice vs 3 species

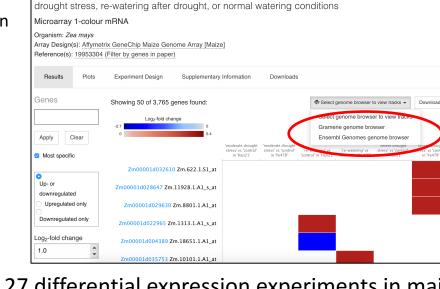


# Find Reaction/Entity


http://plantreactome.gramene.org

**OMICs data analysis tool** 





mapped gene loci

**Interactor Overlay** 



ATLAS data visualization tools are connected to Gramene, **Ensembl Plants and Plant Reactome resources** 





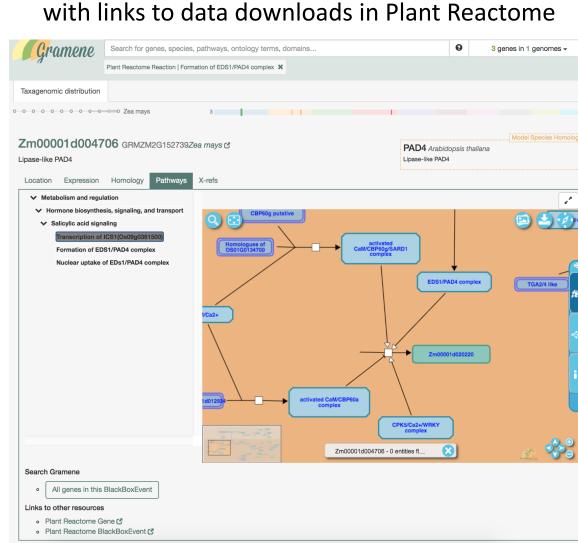
27 differential expression experiments in maize If more than one gene (e.g. paralogs) is associated to a reaction, then only some (yellow) had ortholog match

# Specific Aim 3: INFRASTRUCTURE

#### **Year Highlights**

- The Gramene Search Interface became Gramene's new front page <a href="http://www.gramene.org">http://www.gramene.org</a>
- New pathways view in Gramene Search
- New neighborhood conservation mode in the Homology tab of the results of a query

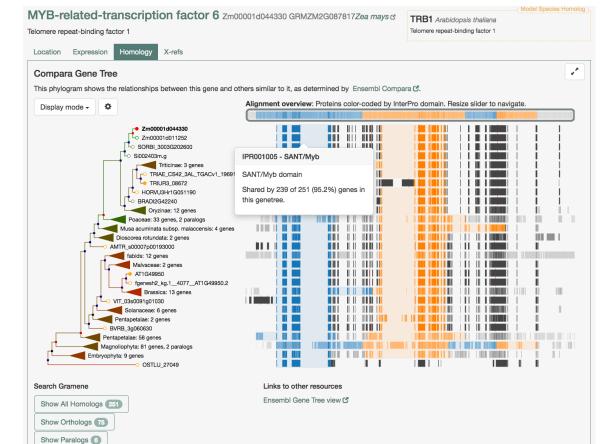
#### Powerful search interface


http:www.gramene.org

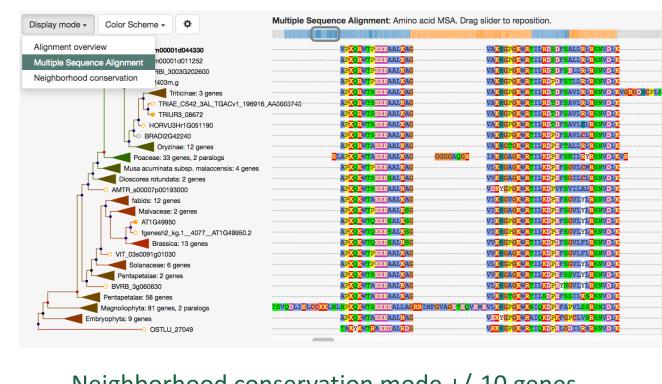
Summarize results by category, suggest text-based queries, filter by species



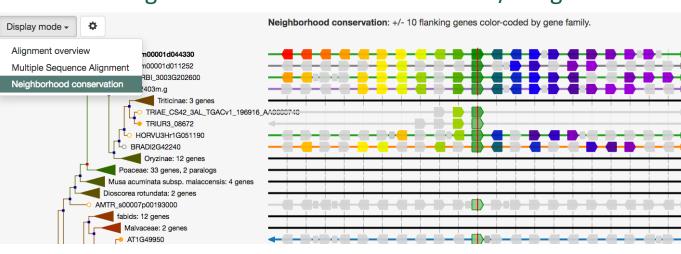
## Pathways view


Shows the reactions and pathways that a gene takes part in with links to data downloads in Plant Reactome

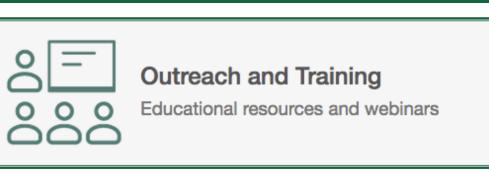



#### **Homology view**

Shows inferred evolutionary histories from Compara, integrated with functional domain information from InterPro.


## Overview




Multi-alignment view for viewing amino acid conservation

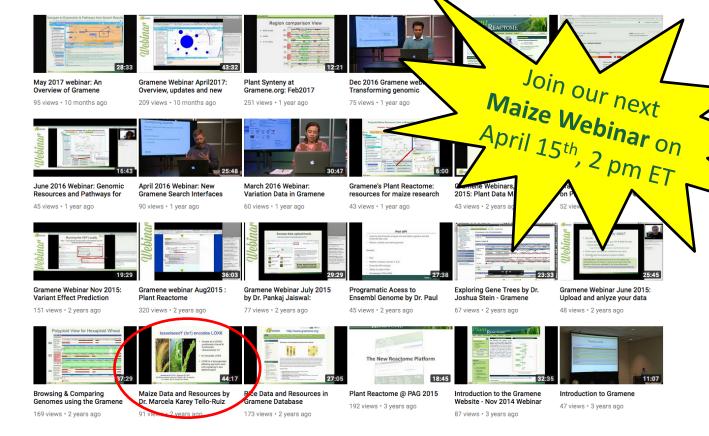


## Neighborhood conservation mode +/-10 genes



# Specific Aim 4: OUTREACH




#### http://www.gramene.org/outreach

### Find here links to:

- Download a quick start Gramene pamphlet and other e-learning materials:
- ftp://ftp.gramene.org/pub/gramene/outreach
- Subscribe to Gramene's mailing list
- Gramene's You Tube channel to Follow Gramene in Social Media:



#### Videotutorials in Gramene's YouTube channel



#### Maize-specific outreach activities:

- Coordination on standards & maize reference assembly releases with MaizeGDB
- Maize annotation jamboree in collaboration with the MaizeCODE project
- Coordination of Maize HapMap4 with NSF # & European Variation Archive

Bioinformatics resources outreach booths



Contact us! feedback@gramene.org

**Collaborative meeting between Gramene &** 

## **Recent publications**

Jiao et al (2017). Improved maize reference genome with single-

molecule technologies. Nature 546(7659):524-527. Bukowski et al (2017). Construction of the third generation Zea mays

haplotype map. Gigascience. Tello-Ruiz et al (2018). Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res. 46(D1):D1181-D1189.

Jiao et al (2018) Efficient Identification of Causal Mutations through Sequencing of Bulked F<sub>2</sub> from Two Allelic Bloomless Mutants of Sorghum bicolor. Front Plant Sci.8:2267.

Stein et al (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the

genus Oryza. Nat Genet. 50(2):285-296. Naithani et al (2017). Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res, 45(D1): p. D1029-D1039. Kersey et al (2018). Ensembl Genomes 2018: an integrated omics

46:D802-D808. Papatheodorou et al (2018). Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46(D1):D246-D251.

infrastructure for non-vertebrate species. *Nucleic Acids Research* 











