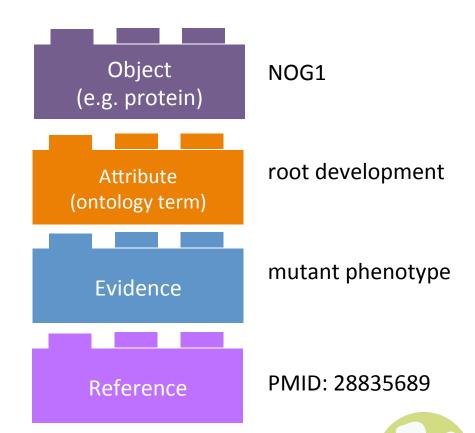
GO-ing beyond Term Enrichment

Maximizing *A. thaliana* GO annotations


Tanya Berardini,
The Arabidopsis Information Resource

Ontology Annotations

- ... a statement that a gene product:
- has a particular molecular function or is involved in a particular biological process or is located within a certain cellular component or is expressed in a particular anatomical structure or is expressed during a particular developmental stage
- as determined by a particular method
- 3. as described in a particular reference

Example

yeast-two hybrid system. Yeast two-hybrid analysis revealed that CCA1, but not the other proteins in the photoperiod pathway, interact with MLK4 (Figure 4A). These results were confirmed using a protein pull-down assay; MLK4 fused to GST was observed to bind beads containing His fused to CCA1, but not His beads alone

8

Locus/Gene Model	Gene Symbol/Full Name	Relationship Type	Keyword	Keyword Category	Evidence Code 0: Evidence Description 0: Evidence With: Reference 0	Annotated By/ Date Last Modified
AT2G46830	CCA1/ CIRCADIAN CLOCK ASSOCIATED 1		protein binding	molecular function	inferred from physical interaction: Co-immunoprecipitation: AT3G13670: Su, et al. (2017)	The Arabidopsis Information Resource/ 2018-01-06

GO Evidence Codes

Inferred from

- Direct Assay (IDA)
- Physical Interaction (IPI)
- Mutant Phenotype (IMP)
- Genetic Interaction (IGI)
- Expression Pattern (IEP)

Inferred from

- Sequence or structural Similarity (ISS)
- Electronic Annotation (IEA)
- Others...

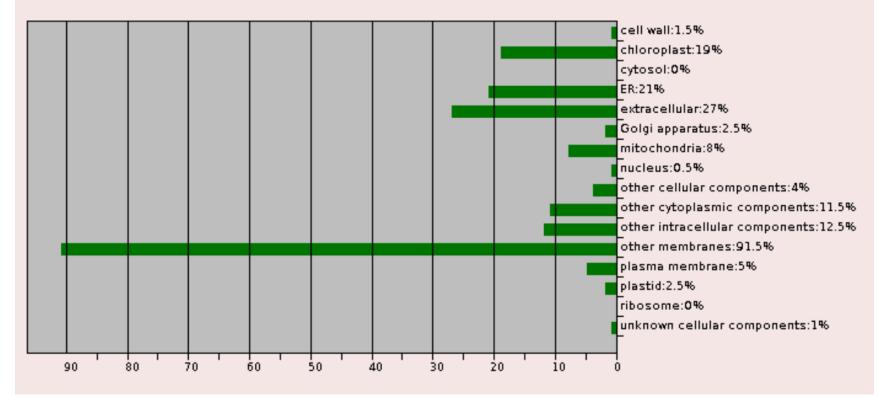
- Traceable Author Statement (TAS)
- Non-traceable Author Statement (NAS)
- Inferred by Curator (IC)
- No Biological Data available (ND)

Who makes experimental GO annotations?

Annotations per Assigned By	Gene products per Assigned By				
	%	Count		%	Count
TAIR	70.55	49,025	TAIR	90.51	11,745
UniProt	17.81	12,375	UniProt	24.89	3,230
IntAct	10.05	6,984	IntAct	12.37	1,605
CAFA	1.06	738	CAFA	2.46	319
ComplexPortal	0.33	227	ComplexPortal	0.76	99
CACAO	0.20	136	CACAO	0.81	105
GO_Central	0.00	3	GO_Central	0.02	2
AgBase	0.00	2	AgBase	0.02	2

Things to do with GO annotations: Small scale

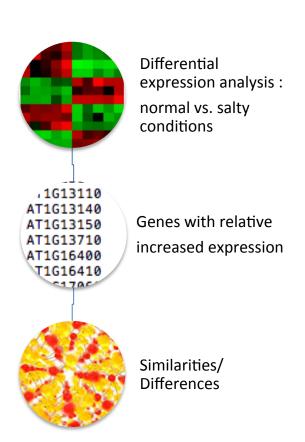
- Compare one gene's annotations to another
- Find an GO term of interest, find all genes in a single species annotated to this term
- Find a GO term of interest, find all genes in all annotated species annotated to this term



Things to do with GO annotations: Large scale

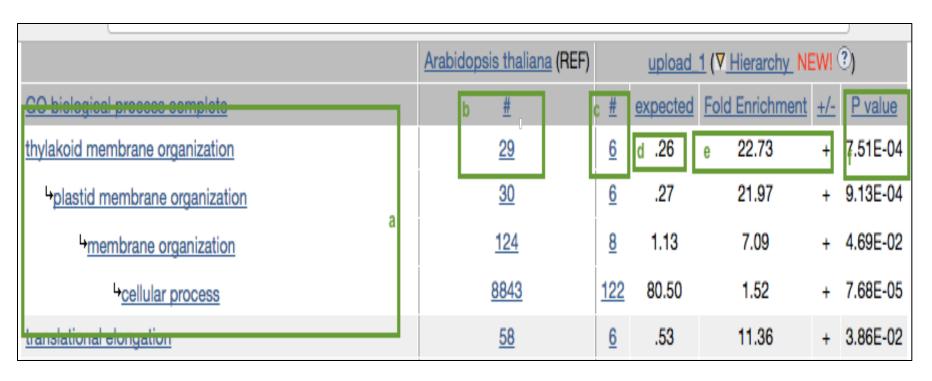
- Project from Arabidopsis experimental annotations to other species
- Functional Categorization: Take a list of annotated genes and see how their annotations group in broad categories
- Term Enrichment: A list of genes/proteins is compared to a reference list (usually the whole genome) to statistically determine over- or under-representation of the selected ontology categories among genes/proteins in the list.

Functional Categorization @ TAIR


Functional Categorization by loci for : GO Cellular Component $N=200\,$



New Tool: Overrepresented processes in my set of genes?

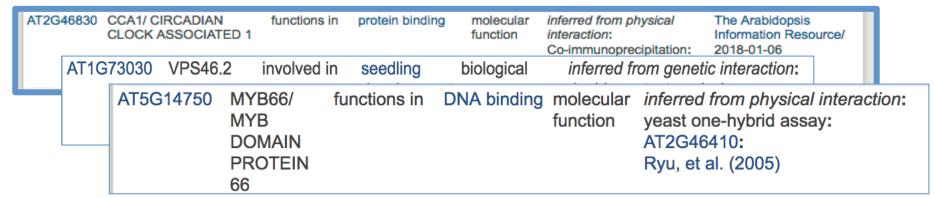


http://www.arabidopsis.org/tools/go_term_enrichment.jsp

Data Source: Nguyen, et al., Tomato Golden2-like transcription factors reveal molecular gradients that function during fruit development and ripening. (https://doi.org/10.1105/tpc.113.118794)

GO Term Enrichment Results

Powered by PANTHER.


Term Enrichment tools: Pay Attention to Data Dates

- GO Term Enrichment (powered by Panther)
 - Gene Ontology (from GO database version 1.2, released 2018-06-01)
- AgriGO
 - Last maintain: 2017-04-04
- DAVID
 - GENE ONTOLOGY: Apr 2016, May 2016

What else?

- Mine "Evidence with"
 - Protein binding partners (IPI)
 - DNA binding targets (IPI)
 - Genetic interactions (IGI)
- Mine Experimental methods

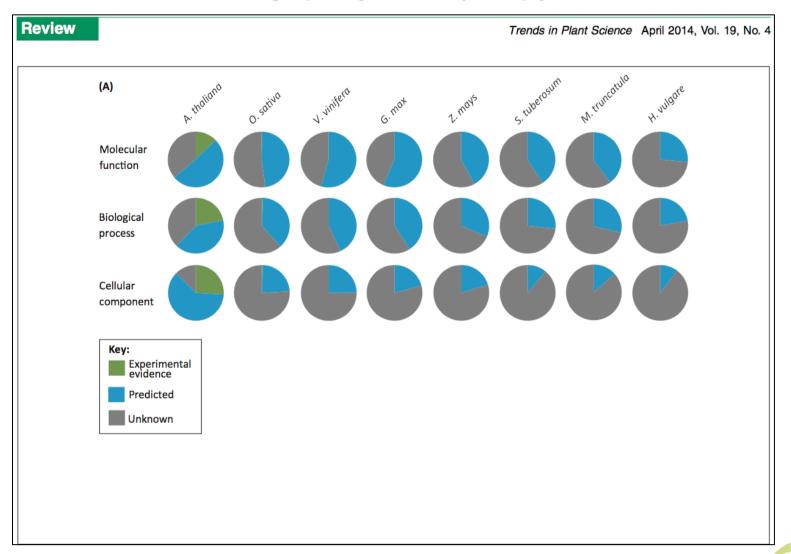
Sample: Molecular Function Annotation Evidence Descriptions

Description	# of annotations
Enzyme assays	1996
Yeast two-hybrid assay	1316
Co-purification	933
Co-immunoprecipitation	594
In vitro binding assay	422
Yeast one-hybrid assay	416
Functional complementation in heterologous system	385

HOW CAN YOU HELP?

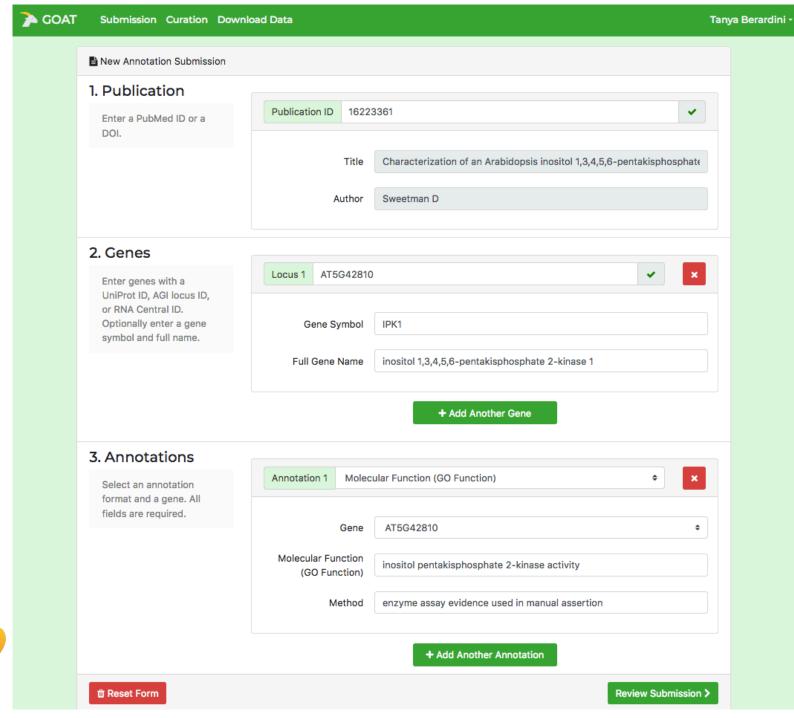
Arabidopsis thaliana Functional Annotation

(Araport 11, as of June 2018)



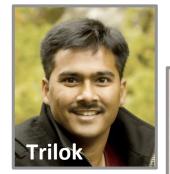
- Functional classification
- Structural/Homology based assignments

Other Plants



Harness the power of the community's knowledge

- Gene functional information (function, expression, binding interactions, comments)
- Community curation tool developed by Phoenix and RIT SE Seniors
- Applicable to any gene product (protein or ncRNA) from any organism



Phoenix Bioinformatics

Tech Team

Sales Team

Finance

Science Team

nya

curator@arabidopsis.org

AgBioData Consortium Booth in Exhibit Hall

